已知实数x、y满足
2x-3y=4
x=2+1.5y
x的最大值
x<2+1.5×2
x<5
k=x+y的最大值
x+y<5+2=7
并且x≥-1,y<2,现有k=x+y,则k的取值范围是_____求过程
已知实数x、y满足
2x-3y=4
x=2+1.5y
x的最大值
x<2+1.5×2
x<5
k=x+y的最大值
x+y<5+2=7
2x-3y=4
x=2+1.5y
x的最小值是-1
y的最小值
y=(-1-2)/1.5=-2
k=x+y的最小值
x+y=-1-2=-3
-3<k≦7
先把2x-3y=4变形得到y=3分之1(2x-4),由y<2得到3分之1(2x-4)<2,解得x<5,所以x的取值范围为-1≤x<5,再用x变形k得到k=3分之1x+3分之4,然后利用一次函数的性质确定k的范围.
解:∵2x-3y=4,
∴y=3分之1(2x-4),
∵y<2,
∴3分之1(2x-4)<2,解得x<5,
又∵x≥-1,
∴-1≤x<5,
∵k=x-3分之1(2x-4)=3分之1x+3分之4,
当x=-1时,k=×3分之1(-1)+3分之4=1;
当x=5时,k=3分之1×5+3分之4=3,
∴1≤k<3.
故答案为:1≤k<3.
1234567899999999999999999999999999999999999999999999999999999999999=9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999=FG